almost all of its power output would be captured. From the outside it would look like a 1AU-diameter object glowing in the IR with an effective black-body temperature aound 273K.
If you captured all or most of the power output of the star you would be burned to a cinder inside the Dyson sphere due to heat build up.The whole thing is very poorly thought out by the originator.
The originator being Olaf Stapledon in 1937.
Dyson is credited with being the first to formalize the concept of the Dyson sphere in his 1959 paper "Search for Artificial Stellar Sources of Infra-Red Radiation", published in the journal Science.[1] However, Dyson was inspired by the mention of the concept in the 1937 science fiction novel Star Maker, by Olaf Stapledon, and possibly by the works of J. D. Bernal and Raymond Z. Gallun who seem to have explored similar concepts in their work.[2]
Other interesting fun facts from Wiki:
A spherical shell Dyson sphere in our solar system with a radius of one astronomical unit, so that the interior surface would receive the same amount of sunlight as Earth does per solid angle, would have a surface area of at least 2.72x1017 km2, or around 550 million times the surface area of the Earth. This would intercept the full 4x1026 watts of the Sun's output; other variant designs would intercept less, but the shell variant represents the maximum possible energy captured for our solar system at this point of the Sun's evolution. To put this figure in perspective, it is approximately 3.3x1013 times the power consumption of humanity in 1998 which was 1.2x1013 W.
Such a shell would have no net gravitational interaction with its englobed sun (see Shell theorem), and could drift in relation to the central star. If such movements went uncorrected, they could eventually result in a collision between the sphere and the star — most likely with disastrous results. Such structures would need either some form of propulsion to counteract any drift, or some way to repel the surface of the sphere away from the star.
For the same reason, such a shell would have no net gravitational interaction with anything else inside it. The contents of any biosphere placed on the inner surface of a Dyson shell would not be attracted to the sphere's surface and would simply fall into the star. It has been proposed that a biosphere could be contained between two concentric spheres, placed on the interior of a rotating sphere (in which case, the force of artificial "gravity" is perpendicular to the axis of rotation, causing all matter placed on the interior of the sphere to pool around the equator, effectively rendering the sphere a Niven ring for purposes of habitation, but still fully effective as a radiant energy collector) or placed on the outside of the sphere where it would be held in place by the star's gravity. In such cases, some form of illumination would have to be devised, or the sphere made at least partly transparent, as the star's light would otherwise be completely hidden.
Dyson Swarm: The variant closest to Dyson's original conception is the "Dyson swarm". It consists of a large number of independent constructs orbiting in a dense formation around the star. This approach to the construction of a Dyson sphere has several advantages: the components making it up could range widely in individual size and design, and such a sphere could be constructed incrementally over a long period of time.
Dyson Shell: The variant of the Dyson sphere most often depicted in fiction is the "Dyson shell": a uniform solid shell of matter around the star (see diagram at top of page).[6] Unlike the Dyson swarm, such a structure would completely alter the emissions of the central star, and would intercept 100% of the star's energy output. Such a structure would also provide an immense surface which many envision being used for habitation, if the surface could be made habitable.
Dyson Bubble: A third type of Dyson sphere is the "Dyson bubble". It would be similar to a Dyson swarm, composed of many independent constructs (usually solar power satellites and space habitats) and likewise could be constructed incrementally.
Dyson Net: A web of cables strung about the star which could have power or heat collection units strung between the cables. The Dyson net reduces to a special case of Dyson shell or bubble, however, depending on how the cables are supported against the sun's gravity.
Niven Ring: Larry Niven described it as "an intermediate step between Dyson Spheres and planets". The ringworld could perhaps be described as a slice of a Dyson Sphere (taken through its equator), spun for artificial gravity, and used mainly for habitation as opposed to energy collection. Like the Dyson Shell, the Niven ring is inherently unstable without active measures keeping it in position with regards to its central star.
Source:
http://en.wikipedia.org/wiki/Dyson_sphere