Northwestern University's Ramille Shah and her Tissue Engineering and Additive Manufacturing (TEAM) Laboratory have demonstrated the ability to 3D-print structures with simulants of Martian and lunar dust. This work uses an extension of their "3D-painting process," a term that Shah and her team use for their novel 3D inks and printing method, which they previously employed to print hyperelastic "bone," 3D graphene and carbon nanotubes, and metals and alloys.
Shah's research uses NASA-approved lunar and Martian dust simulants, which have similar compositions, particle shapes, and sizes to the dusts found on lunar and Martian surfaces.
"We even 3D-printed interlocking bricks, similar to Legos, that can be used as building blocks," Shah said.
Shah and David Dunand, the James N. and Margie M. Krebs Professor of Materials Science and Engineering, are currently collaborating to optimize ways to fire these 3D-painted structures in a furnace, which is an optional process that can transform the soft, rubbery objects into hard, ceramic-like structures. In the context of the broader 3D-painting technology, this work highlights the potential to use a single 3D printer on another planet to create structures from all kinds of materials.
https://www.sciencedaily.com/releases/2017/04/170412145217.htm